Site-Directed Differentiation of Human Adipose-Derived Mesenchymal Stem Cells to Nucleus Pulposus Cells Using an Injectable Hydroxyl-Functional Diblock Copolymer Worm Gel
نویسندگان
چکیده
Adipose-derived mesenchymal stem cells (ASCs) have been identified for their promising therapeutic potential to regenerate and repopulate the degenerate intervertebral disk (IVD), which is a major cause of lower back pain. The optimal cell delivery system remains elusive but encapsulation within scaffolds likely offer decisive advantage over in solution by ensuring successful retention tissue. Herein, we evaluate use fully synthetic, thermoresponsive poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer worm gel that mimics structure hydrophilic glycosaminoglycans. objective was this direct differentiation human ASCs toward nucleus pulposus (NP) phenotype, with or without addition discogenic growth factors TGFβ GDF6. Accordingly, were incorporated into cold, free-flowing aqueous dispersion copolymer, gelation induced warming 37 °C culture conducted 14 days such assess expression characteristic NP markers compared those produced when using collagen gels. In principle, shear-thinning nature biocompatible enables encapsulated be injected IVD 21G needle. Moreover, find significantly higher gene levels ACAN, SOX-9, KRT8, KR18 gels scaffolds, regardless employed. summary, wholly synthetic considerable as an injectable scaffold treatment disease promoting transition NP-phenotype.
منابع مشابه
Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors
Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...
متن کاملInfluence of simvastatin on the biological behavior of nucleus pulposus-derived mesenchymal stem cells
Objective(s): This research is to study the influences of different concentrations of simvastatin on the biological activities of nucleus pulposus-derived mesenchymal stem cells (NPMSC).Materials and Methods: NPMSC were cultured with different concentrations of simvastatin (0, 0.01, 0.1, and 1 μM) and assessed to determine the possible e...
متن کاملDifferentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells
The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous disease and disorders. Recent phenotypic analysis showed heterogeneity of MSCs. A nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone mar...
متن کاملDifferentiation of Mesenchymal Stem Cells Derived From Human Adipose Tissue into Cholinergic-like Cells: In Vitro Study
Introduction: Cholinergic-associated diseases currently constitute a significant cause of neurological and neurodegenerative disabilities. As the drugs are not efficient in improving the suffered tissues, stem cell treatment is considered an effective strategy for substituting the lost cells. Methods: In the current study, we set out to investigate the differentiation properties of human adip...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomacromolecules
سال: 2021
ISSN: ['1525-7797', '1526-4602']
DOI: https://doi.org/10.1021/acs.biomac.0c01556